Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Nat Commun ; 15(1): 2130, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503739

ABSTRACT

The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Ligands , ErbB Receptors/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics
2.
Lancet Infect Dis ; 24(4): 386-394, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218195

ABSTRACT

BACKGROUND: Treatment with benznidazole for chronic Chagas disease is associated with low cure rates and substantial toxicity. We aimed to compare the parasitological efficacy and safety of 3 different benznidazole regimens in adult patients with chronic Chagas disease. METHODS: The MULTIBENZ trial was an international, randomised, double-blind, phase 2b trial performed in Argentina, Brazil, Colombia, and Spain. We included participants aged 18 years and older diagnosed with Chagas disease with two different serological tests and detectable T cruzi DNA by qPCR in blood. Previously treated people, pregnant women, and people with severe cardiac forms were excluded. Participants were randomly assigned 1:1:1, using a balanced block randomisation scheme stratified by country, to receive benznidazole at three different doses: 300 mg/day for 60 days (control group), 150 mg/day for 60 days (low dose group), or 400 mg/day for 15 days (short treatment group). The primary outcome was the proportion of patients with a sustained parasitological negativity by qPCR during a follow-up period of 12 months. The primary safety outcome was the proportion of people who permanently discontinued the treatment. Both primary efficacy analysis and primary safety analysis were done in the intention-to-treat population. The trial is registered with EudraCT, 2016-003789-21, and ClinicalTrials.gov, NCT03191162, and is completed. FINDINGS: From April 20, 2017, to Sept 20, 2020, 245 people were enrolled, and 234 were randomly assigned: 78 to the control group, 77 to the low dose group, and 79 to the short treatment group. Sustained parasitological negativity was observed in 42 (54%) of 78 participants in the control group, 47 (61%) of 77 in the low dose group, and 46 (58%) of 79 in the short treatment group. Odds ratios were 1·41 (95% CI 0·69-2·88; p=0·34) when comparing the low dose and control groups and 1·23 (0·61-2·50; p=0·55) when comparing short treatment and control groups. 177 participants (76%) had an adverse event: 62 (79%) in the control group, 56 (73%) in the low dose group, and 59 (77%) in the short treatment group. However, discontinuations were less frequent in the short treatment group compared with the control group (2 [2%] vs 11 [14%]; OR 0·20, 95% CI 0·04-0·95; p=0·044). INTERPRETATION: Participants had a similar parasitological responses. However, reducing the usual treatment from 8 weeks to 2 weeks might maintain the same response while facilitating adherence and increasing treatment coverage. These findings should be confirmed in a phase 3 clinical trial. FUNDING: European Community's 7th Framework Programme.


Subject(s)
Chagas Disease , Nitroimidazoles , Adult , Humans , Chagas Disease/drug therapy , Double-Blind Method , Nitroimidazoles/administration & dosage , Treatment Outcome
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256275

ABSTRACT

Chagas disease is caused by the parasite Trypanosoma cruzi. In humans, it evolves into a chronic disease, eventually resulting in cardiac, digestive, and/or neurological disorders. In the present study, we characterized a novel T. cruzi antigen named Tc323 (TcCLB.504087.20), recognized by a single-chain monoclonal antibody (scFv 6B6) isolated from the B cells of patients with cardiomyopathy related to chronic Chagas disease. Tc323, a ~323 kDa protein, is an uncharacterized protein showing putative quinoprotein alcohol dehydrogenase-like domains. A computational molecular docking study revealed that the scFv 6B6 binds to an internal domain of Tc323. Immunofluorescence microscopy and Western Blot showed that Tc323 is expressed in the main developmental forms of T. cruzi, localized intracellularly and exhibiting a membrane-associated pattern. According to phylogenetic analysis, Tc323 is highly conserved throughout evolution in all the lineages of T. cruzi so far identified, but it is absent in Leishmania spp. and Trypanosoma brucei. Most interestingly, only plasma samples from patients infected with T. cruzi and those with mixed infection with Leishmania spp. reacted against Tc323. Collectively, our findings demonstrate that Tc323 is a promising candidate for the differential serodiagnosis of chronic Chagas disease in areas where T. cruzi and Leishmania spp. infections coexist.


Subject(s)
Chagas Disease , Leishmania , Trypanosoma cruzi , Humans , Molecular Docking Simulation , Phylogeny , Chagas Disease/diagnosis , Antibodies, Monoclonal
4.
ACS Catal ; 13(24): 15956-15966, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125980

ABSTRACT

The nanoparticle (NP) redox state is an important parameter in the performance of cobalt-based Fischer-Tropsch synthesis (FTS) catalysts. Here, the compositional evolution of individual CoNPs (6-24 nm) in terms of the oxide vs metallic state was investigated in situ during CO/syngas treatment using spatially resolved X-ray absorption spectroscopy (XAS)/X-ray photoemission electron microscopy (X-PEEM). It was observed that in the presence of CO, smaller CoNPs (i.e., ≤12 nm in size) remained in the metallic state, whereas NPs ≥ 15 nm became partially oxidized, suggesting that the latter were more readily able to dissociate CO. In contrast, in the presence of syngas, the oxide content of NPs ≥ 15 nm reduced, while it increased in quantity in the smaller NPs; this reoxidation that occurs primarily at the surface proved to be temporary, reforming the reduced state during subsequent UHV annealing. O K-edge measurements revealed that a key parameter mitigating the redox behavior of the CoNPs were proximate oxygen vacancies (Ovac). These results demonstrate the differences in the reducibility and the reactivity of Co NP size on a Co/TiO2 catalyst and the effect Ovac have on these properties, therefore yielding a better understanding of the physicochemical properties of this popular choice of FTS catalysts.

5.
Nat Commun ; 13(1): 5221, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064719

ABSTRACT

Methane-oxidizing bacteria play a central role in greenhouse gas mitigation and have potential applications in biomanufacturing. Their primary metabolic enzyme, particulate methane monooxygenase (pMMO), is housed in copper-induced intracytoplasmic membranes (ICMs), of which the function and biogenesis are not known. We show by serial cryo-focused ion beam (cryoFIB) milling/scanning electron microscope (SEM) volume imaging and lamellae-based cellular cryo-electron tomography (cryoET) that these ICMs are derived from the inner cell membrane. The pMMO trimer, resolved by cryoET and subtomogram averaging to 4.8 Å in the ICM, forms higher-order hexagonal arrays in intact cells. Array formation correlates with increased enzymatic activity, highlighting the importance of studying the enzyme in its native environment. These findings also demonstrate the power of cryoET to structurally characterize native membrane enzymes in the cellular context.


Subject(s)
Methylococcaceae , Oxygenases , Copper/chemistry , Methane/metabolism , Methylococcaceae/metabolism , Minerals , Oxidation-Reduction , Oxygenases/metabolism
6.
Structure ; 30(9): 1354-1365.e5, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35700726

ABSTRACT

Fibronectin Leucine-rich Repeat Transmembrane (FLRT 1-3) proteins are a family of broadly expressed single-spanning transmembrane receptors that play key roles in development. Their extracellular domains mediate homotypic cell-cell adhesion and heterotypic protein interactions with other receptors to regulate cell adhesion and guidance. These in trans FLRT interactions determine the formation of signaling complexes of varying complexity and function. Whether FLRTs also interact at the surface of the same cell, in cis, remains unknown. Here, molecular dynamics simulations reveal two dimerization motifs in the FLRT2 transmembrane helix. Single particle tracking experiments show that these Small-X3-Small motifs synergize with a third dimerization motif encoded in the extracellular domain to permit the cis association and co-diffusion patterns of FLRT2 receptors on cells. These results may point to a competitive switching mechanism between in cis and in trans interactions, which suggests that homotypic FLRT interaction mirrors the functionalities of classic adhesion molecules.


Subject(s)
Cell Adhesion Molecules , Membrane Glycoproteins , Cell Adhesion/physiology , Cell Adhesion Molecules/metabolism , Dimerization , Membrane Glycoproteins/chemistry , Signal Transduction
7.
Cancers (Basel) ; 14(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35158954

ABSTRACT

Non-small cell lung cancer (NSCLC) is a complex disease often driven by activating mutations or amplification of the epidermal growth factor receptor (EGFR) gene, which expresses a transmembrane receptor tyrosine kinase. Targeted anti-EGFR treatments include small-molecule tyrosine kinase inhibitors (TKIs), among which gefitinib and erlotinib are the best studied, and their function more often imaged. TKIs block EGFR activation, inducing apoptosis in cancer cells addicted to EGFR signals. It is not understood why TKIs do not work in tumours driven by EGFR overexpression but do so in tumours bearing classical activating EGFR mutations, although the latter develop resistance in about one year. Fluorescence imaging played a crucial part in research efforts to understand pro-survival mechanisms, including the dysregulation of autophagy and endocytosis, by which cells overcome the intendedly lethal TKI-induced EGFR signalling block. At their core, pro-survival mechanisms are facilitated by TKI-induced changes in the function and conformation of EGFR and its interactors. This review brings together some of the main advances from fluorescence imaging in investigating TKI function and places them in the broader context of the TKI resistance field, highlighting some paradoxes and suggesting some areas where super-resolution and other emerging methods could make a further contribution.

8.
Nat Commun ; 12(1): 4629, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330917

ABSTRACT

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate cytopathic events induced by SARS-CoV-2 with virus replication processes in frozen-hydrated cells, we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. Here we report critical SARS-CoV-2 structural events - e.g. viral RNA transport portals, virus assembly intermediates, virus egress pathway, and native virus spike structures, in the context of whole-cell volumes revealing drastic cytppathic changes. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Virus Assembly/immunology , Virus Release/immunology , Virus Replication/immunology , Animals , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Cryoelectron Microscopy , Electron Microscope Tomography , Humans , Pandemics/prevention & control , SARS-CoV-2/physiology , SARS-CoV-2/ultrastructure , Vero Cells , Virus Assembly/physiology , Virus Release/physiology , Virus Replication/physiology
9.
Biomolecules ; 11(2)2021 02 15.
Article in English | MEDLINE | ID: mdl-33672015

ABSTRACT

Mammalian cells are constantly subjected to a variety of DNA damaging events that lead to the activation of DNA repair pathways. Understanding the molecular mechanisms of the DNA damage response allows the development of therapeutics which target elements of these pathways. Double-strand breaks (DSB) are particularly deleterious to cell viability and genome stability. Typically, DSB repair is studied using DNA damaging agents such as ionising irradiation or genotoxic drugs. These induce random lesions at non-predictive genome sites, where damage dosage is difficult to control. Such interventions are unsuitable for studying how different DNA damage recognition and repair pathways are invoked at specific DSB sites in relation to the local chromatin state. The RNA-guided Cas9 (CRISPR-associated protein 9) endonuclease enzyme is a powerful tool to mediate targeted genome alterations. Cas9-based genomic intervention is attained through DSB formation in the genomic area of interest. Here, we have harnessed the power to induce DSBs at defined quantities and locations across the human genome, using custom-designed promiscuous guide RNAs, based on in silico predictions. This was achieved using electroporation of recombinant Cas9-guide complex, which provides a generic, low-cost and rapid methodology for inducing controlled DNA damage in cell culture models.


Subject(s)
CRISPR-Cas Systems , DNA Breaks, Double-Stranded , DNA Damage , Cell Survival , Cisplatin/pharmacology , Computer Simulation , DNA Repair , Electroporation , Endonucleases/genetics , Escherichia coli/metabolism , Gene Editing/methods , Genome, Human , Genomic Instability , Genomics , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Mutagens , RNA, Guide, Kinetoplastida , Stochastic Processes
10.
Structure ; 29(1): 82-87.e3, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33096015

ABSTRACT

The advancement of serial cryoFIB/SEM offers an opportunity to study large volumes of near-native, fully hydrated frozen cells and tissues at voxel sizes of 10 nm and below. We explored this capability for pathologic characterization of vitrified human patient cells by developing and optimizing a serial cryoFIB/SEM volume imaging workflow. We demonstrate profound disruption of subcellular architecture in primary fibroblasts from a Leigh syndrome patient harboring a disease-causing mutation in USMG5 protein responsible for impaired mitochondrial energy production.


Subject(s)
Fibroblasts/ultrastructure , Leigh Disease/pathology , Cells, Cultured , Cryoelectron Microscopy/methods , Humans , Leigh Disease/genetics , Mitochondria/ultrastructure , Mitochondrial Proton-Translocating ATPases/genetics , Mutation , Primary Cell Culture/methods
11.
Nucleic Acids Res ; 49(1): 340-353, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33330932

ABSTRACT

DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.


Subject(s)
Cell Nucleus/ultrastructure , Chromatin/ultrastructure , DNA Breaks, Double-Stranded , DNA Damage , Genomic Instability/genetics , Cell Nucleus/drug effects , Cells, Cultured , Chromatin/genetics , Cisplatin/pharmacology , Cross-Linking Reagents/pharmacology , Cytoskeleton/ultrastructure , Elasticity , HeLa Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Microscopy, Atomic Force , Single Molecule Imaging
12.
Article in English | MEDLINE | ID: mdl-33361290

ABSTRACT

Chagas disease reactivation in HIV-positive people is an opportunistic infection with 79 to 100% mortality. It commonly involves the central nervous system (CNS). Early treatment with trypanocidal drugs such as benznidazole (BNZ) is crucial for this severe manifestation of Trypanosoma cruzi infection. However, limited BNZ clinical pharmacology data are available, especially its concentration in the CNS. We report a series of HIV-positive patients undergoing treatment for T. cruzi meningoencephalitis, their clinical response, and cerebrospinal fluid (CSF) and plasma BNZ concentrations. Measurements were carried out using leftover samples originally obtained for routine medical care. A high-performance liquid chromatography/tandem mass spectrometry bioanalytical method designed for BNZ plasma measurements was adapted and validated for CSF samples. Six patients were enrolled in this study from 2015 to 2019. A total of 6 CSF and 19 plasma samples were obtained. Only three of the CSF samples had detectable BNZ levels, all under 1 µg/ml. Fifteen plasma samples had detectable BNZ, and 13 were above 2 µg/ml, which is the putative trypanocidal level. We observed BNZ concentrations in human CSF and plasma. CSF BNZ concentrations were low or not measurable in all patients, suggesting that the usual BNZ doses may be suboptimal in HIV-positive patients with T. cruzi meningoencephalitis. While drug-drug and drug-disease interactions may be in part responsible, the factors leading to low CSF BNZ levels remain to be studied in detail. These findings highlight the potential of therapeutic drug monitoring in BNZ treatment and suggest that the use of higher doses may be useful for Chagas disease CNS reactivations.


Subject(s)
Chagas Disease , HIV Infections , Meningoencephalitis , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , HIV Infections/complications , HIV Infections/drug therapy , Humans , Meningoencephalitis/drug therapy , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use
13.
Rev. Soc. Bras. Med. Trop ; 54: e20200326, 2021. graf
Article in English | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1143884

ABSTRACT

Abstract Chagas Disease is caused by Trypanosoma cruzi. This infection is endemic in the Americas region. Neurological Chagas reactivation is diagnosed through the visualization of the parasite in the cerebrospinal fluid, blood, or tissue samples. Herein, we report the visualization of trypomastigotes by direct microscopic observation of a brain biopsy specimen and its preservation fluid (PF) in a paitient infected with VIH and T. cruzi. This easy and simple diagnostic method coupled with quantitative polymerase chain reaction can be used in all tissue biopsies and PF of T. cruzi seropositive patients, suspected of Chagas disease reactivation.


Subject(s)
Humans , Trypanosoma cruzi , Chagas Disease/diagnosis , Biopsy , Diagnostic Tests, Routine
14.
Rev Soc Bras Med Trop ; 54: e20200326, 2020.
Article in English | MEDLINE | ID: mdl-33338120

ABSTRACT

Chagas Disease is caused by Trypanosoma cruzi. This infection is endemic in the Americas region. Neurological Chagas reactivation is diagnosed through the visualization of the parasite in the cerebrospinal fluid, blood, or tissue samples. Herein, we report the visualization of trypomastigotes by direct microscopic observation of a brain biopsy specimen and its preservation fluid (PF) in a paitient infected with VIH and T. cruzi. This easy and simple diagnostic method coupled with quantitative polymerase chain reaction can be used in all tissue biopsies and PF of T. cruzi seropositive patients, suspected of Chagas disease reactivation.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Biopsy , Chagas Disease/diagnosis , Diagnostic Tests, Routine , Humans
15.
Cells ; 9(12)2020 12 08.
Article in English | MEDLINE | ID: mdl-33302515

ABSTRACT

Epidermal growth factor receptor (EGFR) takes centre stage in carcinogenesis throughout its entire cellular trafficking odyssey. When loaded in extracellular vesicles (EVs), EGFR is one of the key proteins involved in the transfer of information between parental cancer and bystander cells in the tumour microenvironment. To hijack EVs, EGFR needs to play multiple signalling roles in the life cycle of EVs. The receptor is involved in the biogenesis of specific EV subpopulations, it signals as an active cargo, and it can influence the uptake of EVs by recipient cells. EGFR regulates its own inclusion in EVs through feedback loops during disease progression and in response to challenges such as hypoxia, epithelial-to-mesenchymal transition and drugs. Here, we highlight how the spatiotemporal rules that regulate EGFR intracellular function intersect with and influence different EV biogenesis pathways and discuss key regulatory features and interactions of this interplay. We also elaborate on outstanding questions relating to EGFR-driven EV biogenesis and available methods to explore them. This mechanistic understanding will be key to unravelling the functional consequences of direct anti-EGFR targeted and indirect EGFR-impacting cancer therapies on the secretion of pro-tumoural EVs and on their effects on drug resistance and microenvironment subversion.


Subject(s)
Extracellular Vesicles/metabolism , Neoplasms/metabolism , Disease Progression , Endocytosis , Epithelial-Mesenchymal Transition , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Humans , Neoplasms/pathology , Signal Transduction , Tetraspanins/metabolism , Tumor Microenvironment
16.
Cells ; 9(11)2020 11 19.
Article in English | MEDLINE | ID: mdl-33228060

ABSTRACT

EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.


Subject(s)
Epithelial-Mesenchymal Transition/immunology , Extracellular Vesicles/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Humans , Signal Transduction , Tumor Microenvironment
17.
bioRxiv ; 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33173874

ABSTRACT

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, investigation of the SARS-CoV-2 infection in the native cellular context is scarce, and there is a lack of comprehensive knowledge on SARS-CoV-2 replicative cycle. Understanding the genome replication, assembly and egress of SARS-CoV-2, a multistage process that involves different cellular compartments and the activity of many viral and cellular proteins, is critically important as it bears the means of medical intervention to stop infection. Here, we investigated SARS-CoV-2 replication in Vero cells under the near-native frozen-hydrated condition using a unique correlative multi-modal, multi-scale cryo-imaging approach combining soft X-ray cryo-tomography and serial cryoFIB/SEM volume imaging of the entire SARS-CoV-2 infected cell with cryo-electron tomography (cryoET) of cellular lamellae and cell periphery, as well as structure determination of viral components by subtomogram averaging. Our results reveal at the whole cell level profound cytopathic effects of SARS-CoV-2 infection, exemplified by a large amount of heterogeneous vesicles in the cytoplasm for RNA synthesis and virus assembly, formation of membrane tunnels through which viruses exit, and drastic cytoplasm invasion into nucleus. Furthermore, cryoET of cell lamellae reveals how viral RNAs are transported from double-membrane vesicles where they are synthesized to viral assembly sites; how viral spikes and RNPs assist in virus assembly and budding; and how fully assembled virus particles exit the cell, thus stablishing a model of SARS-CoV-2 genome replication, virus assembly and egress pathways.

18.
Nat Commun ; 11(1): 5641, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159061

ABSTRACT

Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET's broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community.

19.
Biology (Basel) ; 9(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092039

ABSTRACT

Chlamydia pneumoniae is a Gram-negative bacterium responsible for a number of human respiratory diseases and linked to some chronic inflammatory diseases. The major outer membrane protein (MOMP) of Chlamydia is a conserved immunologically dominant protein located in the outer membrane, which, together with its surface exposure and abundance, has led to MOMP being the main focus for vaccine and antimicrobial studies in recent decades. MOMP has a major role in the chlamydial outer membrane complex through the formation of intermolecular disulphide bonds, although the exact interactions formed are currently unknown. Here, it is proposed that due to the large number of cysteines available for disulphide bonding, interactions occur between cysteine-rich pockets as opposed to individual residues. Such pockets were identified using a MOMP homology model with a supporting low-resolution (~4 Å) crystal structure. The localisation of MOMP in the E. coli membrane was assessed using direct stochastic optical reconstruction microscopy (dSTORM), which showed a decrease in membrane clustering with cysteine-rich regions containing two mutations. These results indicate that disulphide bond formation was not disrupted by single mutants located in the cysteine-dense regions and was instead compensated by neighbouring cysteines within the pocket in support of this cysteine-rich pocket hypothesis.

20.
FASEB J ; 34(3): 3537-3553, 2020 03.
Article in English | MEDLINE | ID: mdl-31950564

ABSTRACT

Voltage-gated sodium channels comprise an ion-selective α-subunit and one or more associated ß-subunits. The ß3-subunit (encoded by the SCN3B gene) is an important physiological regulator of the heart-specific sodium channel, Nav1.5. We have previously shown that when expressed alone in HEK293F cells, the full-length ß3-subunit forms trimers in the plasma membrane. We extend this result with biochemical assays and use the proximity ligation assay (PLA) to identify oligomeric ß3-subunits, not just at the plasma membrane, but throughout the secretory pathway. We then investigate the corresponding clustering properties of the α-subunit and the effects upon these of the ß3-subunits. The oligomeric status of the Nav1.5 α-subunit in vivo, with or without the ß3-subunit, has not been previously investigated. Using super-resolution fluorescence imaging, we show that under conditions typically used in electrophysiological studies, the Nav1.5 α-subunit assembles on the plasma membrane of HEK293F cells into spatially localized clusters rather than individual and randomly dispersed molecules. Quantitative analysis indicates that the ß3-subunit is not required for this clustering but ß3 does significantly change the distribution of cluster sizes and nearest-neighbor distances between Nav1.5 α-subunits. However, when assayed by PLA, the ß3-subunit increases the number of PLA-positive signals generated by anti-(Nav1.5 α-subunit) antibodies, mainly at the plasma membrane. Since PLA can be sensitive to the orientation of proteins within a cluster, we suggest that the ß3-subunit introduces a significant change in the relative alignment of individual Nav1.5 α-subunits, but the clustering itself depends on other factors. We also show that these structural and higher-order changes induced by the ß3-subunit do not alter the degree of electrophysiological gating cooperativity between Nav1.5 α-subunits. Our data provide new insights into the role of the ß3-subunit and the supramolecular organization of sodium channels, in an important model cell system that is widely used to study Nav channel behavior.


Subject(s)
Cell Membrane/metabolism , NAV1.5 Voltage-Gated Sodium Channel/chemistry , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Protein Subunits/metabolism , Electrophysiology , HEK293 Cells , Humans , Immunoprecipitation , Kinetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , Patch-Clamp Techniques , Protein Subunits/chemistry , Protein Subunits/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...